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Abstract. The spin-holon effective Hamiltonian proposed by Zou and Anderson is used to 
calculate the chemical potential and the self-energy correction of spinons. Our rsults show 
that lhe effect of spin-exchange interaction is to enlarge the spinon bandwidth. For low 
temperatures and fixed doping fraction 6 ,  the renormalized bandwidth and the chemical 
potential are nearly independent of temperature, but both change rapidly with the doping 
fraction. In the supemuid phase, the effect of increasing the doping fraction or increasing 
the on-site Coulomb repulsion Uis to increase the relative kinetic energyof spinons, leading 
to a decrease in the superfluid transition temperature T*(cS), which is sensitive to various 
choices of U and the band parameter f; the increase in U tends to shift the boundary of 
T,(6) towards a lower doping fraction. The correction due to spin fluctuations is extremely 
important for small doping fractions, leading tomodification of the results ofBaskaran, Zou 
and Anderson, and Ruckstein, Hirschfeld and Appel. Moreover, in the region of 6 G’ 
8t,’z2U, the effea of paramagnon fluctuations renders the mean-field theory invalid. We 
also discuss the effects of holon fluctuations on the mean-field results. 

1. Introduction 

Recent neutron and Raman scattering experiments have shown clearly that the low- 
temperature phase of high-temperature superconductors (HTSCS) is antiferromagnetic 
(AFM) for small doping fractions [l, 21. The strong two-dimensional AFM correlations 
extend to the HTSC phase. In the material La,CuO,, the correlation length for AFM order 
in the copper oxide layer decreases from 200 8, in the M M  phase to 1C-20 8, in the 
superconducting phase, as the doping fraction increases [3]. This shows that the spin 
correlations between the copper atoms are very important on the copper-oxygen plane. 
Until recently, not much theoretical work has been devoted to the AFM phase transition 
of m c  materials. 

Recently, the two-dimensional Hubbard model has been extensively used for analys- 
ing the physical properties of msc materials. The research can be roughly divided into 
two categories. The most notable is based on the resonating valence bond (RVB) mean- 
field analysis [4], and the other on the investigation of what the role i s  played by spin 
fluctuations [5] in the rmc mechanism. Research reveals that probably the principal 
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mechanism of HTSCS is similar to that of heavy-fermion superconductivity, i.e. AFM spin 
fluctuations lead to anisotropic superconductivity [6] .  

In this paper, we discuss the effect of spin fluctuations on the HTSC mechanism [7]. 
Starting with the effective Hamiltonian of the large-UHubbard model proposed by Zou 
and Anderson [8], we investigate the effect of paramagnon fluctuations on the spinon 
chemical potential and the self-energy correction. The results indicate that, when the 
doping fraction 6 is small, the effect of paramagnon fluctuations on the spinon chemical 
potential and the self-energy correction cannot be neglected, leading to the modification 
of the results of Baskaran, Zou and Anderson (BZA) and Ruckenstein, Hirschfeld and 
Appel(R~a)  [4]. In theregion 6 S 8f/z2U,theeffectofparamagnonfluctuationsrenders 
the mean-field theory invalid. The format of the paper is as follows. In the following 
section, we derive the Zou-Anderson effective Hamiltonian. Then in section 2, within 
the random-phase approximation (RPA), we calculate the spinon self-energy correction 
and chemical potential. Recent RPA calculations on the Hubbard model have been 
attempted [9]: however, it is not the same approximation as used in our present work 
because our starting point is the Zou-Anderson effective Hamiltonian. In section 3, we 
discuss the spinon superfluid phase and derive the spinon system Gorkov equations. 
From that. we solve for the s-wave superfluid phase transition temperature and its 
relation with the temperature and the doping fraction. The results are compared with 
the simple BZA and RHA calculations. We finally discuss the effect of holon fluctuations 
on our mean-field results. 

2. Effective Hamiltonian 

We start with the Zou-Anderson large-U effective Hamiltonian [8]. In the case of 
large on-site Coulomb repulsion U, after taking averages of the holons, the effective 
Hamiltonian can be written as 

He,  -t6 S:,S,, - JE (S:+S:-S,-S,+ + S!+S,+S]-S,-) (1) 
{zip (ii) 

with 

22 s;,s,, = N(1 - 6 )  
, ,e 

where J = 4?/U, and S, is the neutral fermion field operator; the summations over i 
andjare confined to pairs of nearest-neighboursites, and N is the total number of lattice 
sites on the X-Y plane. The first term describes the kinetic energy of spinons and the 
second the exchange interaction. This model has three independent parameters: t .  Jand 
the doping fraction 6 .  After taking the Fourier transformation, the Zou-Anderson 
effective Hamiltonian can be written as 

Hcff = H ,  + H I .  

In equation (2), the corresponding terms are 

(2) 
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where 
bours denoted byi  (2 = 4forsquare lattice). 

= -Z6tyk, yk = (l/Z)&exp(ik.i), Z being the number of nearest neigh- 

3. Spinon self-energy correction and chemical potential 

The lowest-order correction (in J )  for the spinon self-energy can be obtained from the 
RPA calculation [lo]; one gets 

wheref, is the Fermi-Dirac distribution at a temperature T, /?3 = l/kBTis the reciprocal 
temperature and 

f k  = (1 + exp[B(ek - p)I}-'. ( 5 )  
We emphasize here thatf, depends on the chemical potential p, which is related to the 
spinon density N,/N = 1 - 6 being determined only at the end of the calculations. 

The paramagnon fluctuations lead to the renormalization of the bare energy of 
spinons. In order to obtain the lowest-order self-energy correction, we use the bare 
density of states (DOS) which involves the bare energy .zk and the bare bandwidth. The 
approximate DOS in two dimensionscan be written as 

p(&) = (2/,zzD) Inl4D/&l (6) 
where D = 4th is the bare half-width. By a lengthy but straightforward calculation, one 
obtains 

ck=  - B y k .  (7) 
In the notation of BZA and RHA [4], we can write the renormalized half-width as d = 
46t + 2PJ and 

- exp(2klp'l) Ei 

- In(4D') [exp[-2k(Dt - p') ]  (D'  + $-) - (,U' +&)]I 
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l ( l -  1). . . ( I -  j +  1) 

( I  + I)[(/ - 1). . . ( I  - j + 1) It I 

- c  , = I  (2klTl)"' 

Here p' = hpp, D' = &?D and C = 0.577215 is Euler's constant. The function Ei is 
defined by 

-U-] Ei( -v) = exp(-vx) In x du. 

In the original BZA and RWA analysis, the term Pin equation (8) was set to zero. We find 
that it is not a true solution to the simultaneous integral equations. 

The expression for b is fairly complicated; however, at low temperatures (p- a) a 
simple limit can be obtained. The band half-width is increased by an amount AD = 
(2J/nZ) (1 + 4 In 2). Since the spinon bare energy is given by ct = -46ryk, it can be 
understood that the effect of the spin correlation on the spinon self-energy correction is 
to enlarge the bare energy band of spinons. The leading terms of equation (8) can be 
verified directly from equation (1). The direct term gives the renormalized chemical 
potential p ,  and the exchange term renormalies the spinon bandwidth, that is 

j,= 

Let us define 

P 
2 

Taking the Fourier transform with respect to the spinons. 

Taking P-, 3~ and usingequation (6) for the DOS, we obtain 

in exact agreement with equation (8) in the same limit [ll], 
In view of equation (7), the renormalized bandwidth b is obtained as a function of 

the chemical potential p and the temperature Tthrough the Fermi-Dirac distribution. 
A simple numerical analysis shows that b is not sensitive to the change in temperature. 
However, as discussed in the following, the chemical potential changes rapidly with the 
doping fraction 6, and we thus need the study of the chemical potential as a function of 
the doping fraction and the temperature. 

The calculation of the spinon chemical potential is as follows. For large U, the 
relation between the spinon number and the doping fraction can be approximated by 
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Figure1.Thechsmicalpotential~and therenor- 
malized bandwidth D WRUS the doping fraction 1.0.sev 

0 0.15 aw 6 at I = 0.5 eVand U =  2.5eV. 

N ,  = N ( l  - 6 )  = Ek0 fk; hence we get the relation between the chemical potential p and 
the doping fraction 6: 

6 = tanh (:(& - p ) )  
k 

(9)  

Here, for consistency, we use the renormalized spinon energy after considering the 
corrections of the spinon self-energy by the spin correlation. We expect theeomputation 
usingtherenormalized bandwidth and DOStO bea betterapproximation. Henceequation 
(8) can be approximated by the following integral: 

We obtain the following expression: 

- exp(2Pklpl) E ~ ( - ~ P ~ M H ) .  (11) 

Inequation(ll),weobtainthedopingfraction6asafunctionof~,dand T. Thedesired 
results p ( 6 ,  T )  and d(6, T )  can, in principle, be obtained by solving equations (7) and 
(11). However, owing to the complexities of the equations, we are only able to solve 
them numerically. 

The numerical results show that for low temperatures and fixed 6, with the band 
parameter t = 0.2-05 eV and the potential U = 2-5 eV, the chemical potential p and 
the renormalized spinon half-bandwidth D are nearly independent of temperature, but 
both change rapidly with the doping fraction 6. From figure 1 we can see that, the larger 
f becomes, the faster ,U decreases with increasing 6, but p remains nearly zero in 
the region 6 < 0.05, with p = 0 when 6 = 0, which satisfies the half-filled condition. 
Moreover, the correction of spin fluctuations is extremely important for small 6. Fort = 
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0.5 eV and U = 2.5 eV, the correction doubles the bare half-width when 8 = 0.15, thus 
rendering the RPA invalid. 

In the original BZA and RHA analysis 141, the term Pin  equation (8') was completely 
ignored. We find that in the region 6 S f / U ,  the spinon fluctuationscannot be neglected. 
If E, is taken as E ,  in equation (8'). a self-consistent integral equation for P is obtained. 
We also solved this integral equation with equation (9) self-consistently and obtained 
p(6) and P(6). When the self-consistent solutions were compared with the RPA results, 
we find excellent agreement, the discrepancy being less than 7% in the whole 6 S t/U 
region. 

4. Spinon superfluid phase 

In the followingwe discuss the effect of spin Huctuations on the spinon superfluid phase. 
We introduce the Matsubara Green functions 

where T, is the time-ordered operator. Using the method of equation of motion, we 
obtain the following Gor'kov equations [lo]: 

-(J, - ~ , ) F ' + ( - ~ , T - - T ' ) + A @ ) G @ , ~ - T ' ) = O  

-(a, + ~ , ) C G ~ . T - T ' ) + A @ ) F : + ( - ~ , T - T ' ) = ~ ( ~ - - Z ' )  
(13) 

where a, = a/& and 
E = -  

P E P - P  

In equation (14). A b )  is the singlet pair order parameter of the spinon superHuid phase 
and the gap equation is 

E, = m. 
By taking Ap as cosp, + cosp, and by using the renormalized bandwidth and DOS, we 
obtain the following integral equation which determines the s-wave superfluid transition 
temperature T,: 

where y = p / D  and p,  = l /kBT,.  Taking f = O S  eV and t/U = 0.2, and by numerical 
calculations, we obtain the relation between the s-wave transition temperature T, and 
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Figure 2. The s-wave superfluid transition tem- 
perature T, versus the doping fraction 6 at I = 
0.5 eVand U = 2.5 eV.TheresulaofBzAarealso 
plottedforcomparison. AS Uincreases,ourcurve 

a U i w e a s s  

(2-ipq 
0 
0.15 024 tends to shift to the left. 

the doping fraction 6. As shown in figure 2 ,  the effect of increasing the doping fraction 
or increasing Uis to increase the relative kinetic energy of spinons, leading to a decrease 
in the superfluid transition temperature T,(6), which is sensitive to  different choices of 
the parameters t and U. The increase in U tends to shift the boundary of T,(6) to the 
left. 

In figure 2, the BZA results are also plotted for comparison. While our results agree 
qualitatively with rhose of BZA at large doping fractions, the discrepancy becomes 
significant for small doping fractions, indicating that the correction due to spin fluc- 
tuations cannot be ignored for small 6. The present analysis using the method of spinon 
self-energy correction is more convenient for studying the magnetic properties of the 
two-dimensional l a r g e 4  Hubbard model [E]. 

5. Discussion 

In the above treatment, we consider the collection of holons as a nearly free-boson 
system which undergoes the Bose-Einstein condensation in the spinon superfluid phase. 
The mean-field approximation corresponds to taking the Bose condensation of holons 
and will be valid if a sufficient number of holons exist. We expect the transition tem- 
perature of holon Bose-Einstein condensation to be given by Tb t(6 - &), where 6, 
denotes the doping fraction at which the superfluid phase starts to emerge. 

Here we would like to comment on the above mean-field treatments. In the above 
calculations we adopt the effective Hamiltonian approach in which the holon operators 
are repIaced by their averages. In this respect the spin fluctuations have explicitly been 
taken ir.to account and we obtained the spinon self-energy correction. However, in the 
small-6 region, we expect the holon fluctuations to be equally important. 

BZA and RHA [4] explicitly pointed out the inadequacy of the mean-field approxi- 
mation, which can be overcome by doing a systematic expansion in holon fluctuations. 
It turns out that by doing this the holon fluctuations couple to the spin fluctuations and 
the mean-field results are modified. We shall see that the holon fluctuations introduce a 
ferromagnetic (FM) coupling into the problem. Before taking the average, the kinetic 
part of the effective Hamiltonian is written as 
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H, = -tx e,e:S,',S,, 
WI 

whereeristhe holonoperator.Letustakee, = (e,) + B, = fi+ B,,whereB,represents 
the fluctuation about the mean-field value (e,). Then H ,  is written as 

H, -t6 2 S!,S,, + H, 
om 

where H A  is the fluctuation part and 

Let us assume B; to be small and ignore the second-order fluctuations. Using the 
second-order perturbation, we obtain a contribution to the Hamiltonian from the holon 
fluctuations: 

.. . 

where Hf, denotes the first term of H ,  and the symbol t denotes Hermitean conjugate. 
The intermediate state In) has one extra holon compared with the initial state and thus 
E, - E, = -Eh. with Eh < 0 being the energy of a holon. Taking the mean holon energy 
as (Eh). we obtain 

21'6 
H' = - nionjo + self-energy correction term f chemical potential term. 

(Eh) ii,W 

We can see that H' has exactly the same form as the second term of the effective 
Hamiltonian (equation (1)) but with opposite sign (since Eh < 0). This term introduces 
~ F M  couplingwhich wi l lg ivea~~phase  underappropriateconditions. Inordertoobtain 
the FM phase. we calculate the zero-temperature (b-+ m) state magnetic susceptibility 
in the RPA [ 121. We obtain the following condition for the FM phase: 

1 + 4J t r fN~)  0 
where J,,, = J + 2rZ6/(Eh). For a rough estimate, we let ( E h )  = -21 < 0, N ( p )  = (2/ 
d D )  ln/4D/pI and p ( 6 )  = 0.56 - 1.56'. then 

1 - (4/x2)(1 - 6'/6)ln(16/136 - 0.11) s 0 

where 0 = Zr/U. Here we have chosen f = 0.5 eV. We obtain aresult consistent with the 
Monte Carlo simulation of Yokouyama and Shiba 1131. 

In conclusion, we have employed the spin-holon effective Hamiltonian to calculate 
the chemical potential and the self-energy correction of spinons. Our results show that 
the effect of spin-exchangeinteraction is toenlarge the bandwidth. For low temperatures 
and k e d  doping fraction, the renormalized bandwidth and the chemical potential are 
nearly independent of temperature, but both change rapidly with the doping fraction. 
In the superfluid phase, the effect of increasing the doping fraction or increasing the on- 
site Coulomb repulsion is to increase the relative kinetic energy of spinons, leading to a 
decrease in the superfluid transition temperature, which is sensitive to various choices 
of U and the band parameter 1. The increase in U tends to shift the boundary of T,(6) 
towards lower doping fractions. The correction due to spin fluctuations is extremely 
important for small doping fractions. leading to the modification of the results of 
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BZA and RHA [4]. Moreover, in the region of 6 S 8t/nzU, the effect of paramagnon 
fluctuations renders the RPA invalid. We also discuss the inadequacy of the mean-field 
approximation and the effects of holon fluctuations on the mean-field results. 
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